Transduction of the N-terminal fragments of MYPT1 enhances myofilament Ca2+ sensitivity in an intact coronary artery.

نویسندگان

  • Katsuya Hirano
  • Dmitry N Derkach
  • Mayumi Hirano
  • Junji Nishimura
  • Shosuke Takahashi
  • Hideo Kanaide
چکیده

OBJECTIVE The region of the 110 kDa regulatory subunit (MYPT1) of smooth muscle myosin phosphatase involved in the regulation of contraction was determined under physiological conditions. METHODS AND RESULTS Using HIV Tat protein-mediated protein transduction, the N-terminal fragments of MYPT1 were introduced to the intact porcine coronary arterial strips. Pre-incubation with 3 micromol/L TAT-MYPT1(1-374), a construct containing the Tat peptide and the residues 1 to 374 of MYPT1, for 15 minutes augmented (2.4-fold) the subsequent contraction induced by adding 1.25 mmol/L of extracellular Ca2+ under 118 mmol/L K+ depolarization, with no augmentation of the [Ca2+]i elevation. The deletion of the Tat peptide, MYPT1(1-374), abolished the augmenting effect. TAT-MYPT1(1-296) demonstrated a weaker but significant augmentation (1.7-fold). However, TAT-MYPT1(1-171), TAT-MYPT1(39-374), TAT-MYPT1(39-296), and TAT-MYPT1(297-374) had no augmenting activity. The myosin light chain phosphorylation level as a function of extracellular Ca2+ concentrations was shifted to the left in the strips pretreated with TAT-MYPT1(1-374) compared with the control. CONCLUSIONS Region 1 to 296 was the minimal region involved in the enhancement of contraction, and region 297 to 374 played a supplemental role. These results suggested that the interaction mainly between catalytic subunit and MYPT1 play a critical role in the regulation of the endogenous myosin phosphatase in intact smooth muscle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transduction of the N-Terminal Fragments of MYPT1 Enhances Myofilament Ca Sensitivity in an Intact Coronary Artery

Objective—The region of the 110 kDa regulatory subunit (MYPT1) of smooth muscle myosin phosphatase involved in the regulation of contraction was determined under physiological conditions. Methods and Results—Using HIV Tat protein-mediated protein transduction, the N-terminal fragments of MYPT1 were introduced to the intact porcine coronary arterial strips. Pre-incubation with 3 mol/L TAT-MYPT1,...

متن کامل

Comparison of contractile mechanisms of sphingosylphosphorylcholine and sphingosine-1-phosphate in rabbit coronary artery.

AIMS Although stimulation with sphingosylphosphorylcholine (SPC) or sphingosine-1-phosphate (S1P) generally leads to similar vascular responses, the contractile patterns and their underlying signalling mechanisms are often distinct. We investigated the different reliance upon Ca2+-dependent and Ca2+-sensitizing mechanisms of constriction in response to SPC or S1P in coronary arteries. METHODS...

متن کامل

Differential vasodilation of human placental and myometrial arteries related to myofilament Ca(2+)-desensitization and the expression of Hsp20 but not MYPT1.

Endothelial-dependent regulation of vascular tone occurs in part via protein kinase G1α-mediated changes in smooth muscle myofilament sensitivity to Ca(2+). Tissue-specific differences in PKG-dependent relaxation have been attributed to altered expression of myofilament-associated proteins that are substrates for PKG binding. These include the alternative splicing of the myosin targeting subuni...

متن کامل

Depressed cardiac myofilament function in human diabetes mellitus.

Diabetes mellitus is associated with a distinct cardiomyopathy. Whether cardiac myofilament function is altered in human diabetes mellitus is unknown. Myocardial biopsies were obtained from seven diabetic patients and five control, nondiabetic patients undergoing coronary artery bypass surgery. Myofilament function was assessed by determination of the developed force-Ca2+ concentration relation...

متن کامل

Troponin I chimera analysis of the cardiac myofilament tension response to protein kinase A.

Viral-mediated gene transfer of troponin I (TnI) isoforms and chimeras into adult rat cardiac myocytes was used to investigate the role TnI domains play in the myofilament tension response to protein kinase A (PKA). In myocytes expressing endogenous cardiac TnI (cTnI), PKA phosphorylated TnI and myosin-binding protein C and decreased the Ca2+ sensitivity of myofilament tension. In marked contra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 24 3  شماره 

صفحات  -

تاریخ انتشار 2004